История

В 50-х годах биологам понадобилось увеличить контраст наблюдения меченых флюорохромами объектов в толстых срезах тканей . Для разрешения этой проблемы Марвин Минский , профессор в США, предложил использовать для флуоресцентных микроскопов конфокальную схему. В 1961 г. Минский получил на эту схему патент .

Принцип работы

Конфокальный микроскоп имеет разрешение такое же как и обычный микроскоп и ограничено оно дифракционным пределом .

где длина волны излучения, - числовая апертура объектива, - показатель преломления среды между образцом и объективом, - половина угла, который «захватывает» объектив. В видимом диапазоне разрешение составляет ~ 250 нм (NA=1,45, n=1,51) Однако, в последние годы успешно развиваются схемы микроскопов, которые используют нелинейные свойства флуоресценции образцов. В этом случае достигается разрешение значительно меньшее дифракционного предела и составляет ~ 3-10 нм .

Конфокальный микроскоп создаёт чёткое изображение образца, которое при использовании обычного микроскопа представляется размытым. Это достигается путем отрезания апертурой фонового света идущего из глубины образца, то есть того света, который не попадает на фокальную плоскость объектива микроскопа. В результате изображение получается с контрастом лучшим, чем в обычном оптическом микроскопе.

Изображение представляет собой двумерную (2D) картину.

См. также

Преимущества в биологии перед другими микроскопами

Показатель преломления биологических объектов почти такой же как у стекла, поэтому наблюдение этих объектов, находящийся на поверхности предметного стекла, в обычном микроскопе весьма затруднено. Конфокальный микроскоп, имеющий высокий контраст, даёт две неоценимые возможности: он позволяет исследовать ткани на клеточном уровне в состоянии физиологической жизнедеятельности, а также оценивать результаты исследования (то есть клеточной активности) в четырёх измерениях - высота, ширина, глубина и время.

Примечания

Ссылки

  • Molecular Expressions : Laser Scanning Confocal Microscopy
  • Nikon’s MicroscopyU . Comprehensive introduction to confocal microscopy.
  • Emory’s Physics Department . Introduction to confocal microscopy and fluorescence.
  • The Science Creative Quarterly’s overview of confocal microscopy - high res images also available.
  • Programmable Array Microscope - Confocal Microscope Capabilities.

Wikimedia Foundation . 2010 .

Смотреть что такое "Конфокальный микроскоп" в других словарях:

    У этого термина существуют и другие значения, см. Микроскоп (значения). Микроскоп, 1876 год … Википедия

    Атомно силовой микроскоп Атомно силовой микроскоп (АСМ, англ. AFM atomic force microscope) сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от дес … Википедия

    Общее название методов наблюдения в микроскоп неразличимых человеческим глазом объектов. Подробнее см. в ст. (см. МИКРОСКОП). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    - (англ. nitrogen vacancy center) или азото замещённая вакансия в алмазе это один из многочисленных точечных дефектов алмаза. Дефект представляет собой нарушение строения кристаллической решётки алмаза, возникающий при удалении атома… … Википедия

    В Википедии есть статьи о других людях с такой фамилией, см. Мински. В Википедии есть статьи о других людях с такой фамилией, см. Минский. Марвин Ли Мински англ. Marvin Lee Minsky … Википедия

    Мински, Марвин Ли Американский учёный в области искусственного интеллекта Дата рождения: 9 августа 1927(19270809) … Википедия

    Мински, Марвин Ли Американский учёный в области искусственного интеллекта Дата рождения: 9 августа 1927(19270809) … Википедия

    Мински, Марвин Ли Американский учёный в области искусственного интеллекта Дата рождения: 9 августа 1927(19270809) … Википедия

    Ли Американский учёный в области искусственного интеллекта Дата рождения: 9 августа 1927(19270809) … Википедия

Книги

  • Конфокальная микроскопия и ультрамикроскопия живой клетки , Свищев Георгий Михайлович. Конфокальный микроскоп - это разновидность сканирующего светового микроскопа. При исследовании толстых объектов он дает изображения, свободные от фона, которые вобычных микроскопах создается…

ОБЗОР ЛИТЕРАТУРЫ

Прижизненная отражательная конфокальная лазерная сканирующая микроскопия: история создания, принцип работы, возможности применения в дерматологии

Н.Н. ЛУКАШЕВА1 , С.Б. ТКАЧЕНКО1 , Н.Н. ПОТЕКАЕВ2 , Т.С. КУЗЬМИНА1 , Е.А. ВАСИЛЕВСКАЯ1

1 Лаборатория по изучению репаративных процессов в коже НИИ молекулярной медицины ММА им. И.М. Сеченова; 2 кафедра

кожных и венерических болезней ФППОВ ММА им. И.М. Сеченова

Lifetime-period reflecting confocal laser scan microscopy: the history of foundation, the principle of functioning, possibilities of using in dermatology

N.N. LUKASHEVA1 , S.B. TKACHENKO1 , N.N. POTEKAEV2 , T.S. KUZ’MINA1 , E.A. VASILEVSKAYA1

1 Laboratory by studying of reparative processes in the skin of Research Institute of molecular medicine of I.M. Sechenov Moscow medical academy; 2 FPPOP of I.M. Sechenov Moscow medical academy

Одной из тенденций современной медицины является применение неинвазивных органосохраняющих методов исследования. Благодаря научным разработкам и внедрению в практику инновационных технологий в последнее десятилетие появились новые неинвазивные высокоразрешающие методы исследования структуры кожи и других тканей. К ним относятся оптическая когерентная томография, высокочастотное ультразвуковое сканирование, ядерно-магнитный резонанс, конфокальная лазерная сканирующая микроскопия (КЛСМ). Последний метод занимает особое место среди визуализирующих технологий, так как позволяет получить изображение эпидермиса и поверхностной части дермы с разрешением, приближенным к традиционной световой микроскопии .

Основная концепция конфокальной микроскопии была разработана M. Minsky в середине 50-х годов прошлого столетия с целью исследования нейронной сети в нативном препарате ткани головного мозга без предварительного окрашивания . Это изобретение осталось без внимания в силу отсутствия на тот момент мощного источника света, необходимого для получения изображения, а также должного компьютерного оборудования для обработки полученной информации. Вслед за M. Minsky в 60-х годах M. Egger и M. Petran создали многолучевой конфокальный микроскоп с применением вращающегося диска для исследования неокрашенного препарата ткани головного мозга и клеток ганглиев . В 1973 г. благодаря работам M. Egger по дальнейшему совершенствованию конфокального лазерного сканирующего микроскопа впервые были

Klin Dermatol Venerol 2008;5:10-15

опубликованы различимые изображения клеток, полученные с помощью данного метода . Развитие компьютерных и лазерных технологий в 70-80-х годах прошлого столетия, а также возможность получения цифровых изображений привели к росту интереса к конфокальной микроскопии . И в 80-х годах несколько групп исследователей продемонстрировали использование тандемного сканирующего конфокального микроскопа для изображения тканей человека и животных in vivo . Вскоре после того как закончился патент M. Minsky, чертежи конфокального лазерного сканирующего микроскопа были использованы несколькими исследователями для создания рабочих аппаратов. Голландский физик G.F. Brakenhoff разработал конфокальный сканирующий микроскоп в 1979 г. , почти одновременно с ним C. Sheppard внес свой вклад в метод теорией создания изображения . T. Wilson, W. Amos и J. White разработали концепцию и позднее, в 80-х годах прошлого столетия, продемонстрировали полезность конфокальных изображений в исследовании флюоресцирующих биологических образцов . Первый коммерчески доступный аппарат появился в 1987 г. В 90-х годах достижения в оптике и электронике позволили создать более мощные и надежные лазеры, сканирующие зеркальные элементы с высоким коэффициентом полезного действия, высокопроизводительную волоконную оптику, более тонкий слой диэлектрического покрытия и детекторы, уменьшившие шумовые характеристики . Благодаря появившимся в конце 90-х годов высокоскоростным компьютерным системам, увеличенным мониторам и технологиям, позволяющим запоминать большой объем информации, наступил новый взрывной этап в развитии КЛСМ по количеству применений, на которые она могла быть

нацелена. Первые сообщения о применении конфокального лазерного сканирующего микроскопа для получения изображений кожи человека in vivo были опубликованы в 1995 г. . Отражательная конфокальная микроскопия, применяемая в дерматологии, была разработана М. Rajadhyaksha и соавт. и улучшена «Lucid Inc» . В 90-х годах группы исследователей (S. Gonzalez и соавт.) занимались изучением различных патологических состояний кожи с помощью отражательной конфокальной микроскопии и показали большую значимость данного метода как полезного диагностического инструмента .

В зависимости от применяемого источника света существуют разные виды конфокальной микроскопии. Конфокальная микроскопия может выполняться с использованием лазера в качестве источника света или без него. В тандемном сканирующем конфокальном микроскопе обычно используется ртутная лампа. По сравнению с тандемным сканирующим конфокальным микроскопом при КЛСМ используется лазерный луч определенной длины волны и высокой мощности освещения . Кроме того, различают флюоресцентную и отражательную КЛСМ. Благодаря своей безопасности и неинвазивности прижизненная отражательная КЛСМ является более предпочтительной в использовании .

Основной принцип отражательной КЛСМ основан на использовании точечного источника света (лазерный луч), освещающего маленькое пятно внутри ткани, с последующим улавливанием отраженного света через оптически соединенную апертуру (вкрапление) (рис. 1). Отраженный свет проходит через вкрапление, в результате чего только находящийся в фокусе свет достигает детектора, в то время как свет вне фокуса отклоняется. Таким образом, определяется единственный план внутри образца, который расположен в фокусе. Числовая апертура линзы объектива, длина волны и размер открытой апертуры (вкрапления) определяют разрешение изображения, получаемого с помощью отражательной КЛСМ. Лазеры различных длин волн могут быть использованы в качестве источника света для отражающей конфокальной микроскопии. Более длинные, близкие к инфракрасным, длины волн проникают глубже в кожу, но дают более низкое разрешение по сравнению с короткими длинами волн видимого спектра. Отражение света возникает в результате местных различий в коэффициенте преломления внутри ткани. Для отдельных органелл и структур оно обусловлено разницей в коэффициентах преломления по сравнению с ближайшим окружением. Меланосомы дают сильное отражение с длинами волн видимого (400-700 нм) и близкого инфракрасного (700-1064 нм) спектров из-за высокого индекса преломления по сравнению с окружающим эпидермисом. Поэтому клетки, содержащие

Рис. 1. Схема работы конфокального лазерного сканирующего микроскопа.

меланин, такие как базальные кератиноциты и меланоциты, дают яркое изображение .

Существуют конфокальные сканирующие лазерные микроскопы различных фирм-произво- дителей: Vivascope 1000, 1500, 2500 Lucid Inc., Rochester, NY; Optiscan F900, Optiscan Pty. Ltd., Notting Hill, VIC, Australia и др. (рис. 2). При использовании конфокального лазерного микроскопа Vivascope 1500, Lucid Inc. лазерное сканирование осуществляется на длине волны 830 нм с оптической мощностью не более 16 мВт, которое не вызывает повреждения ткани или поражение глаза. Линза объектива дает 30-кратное увеличение (NA 0,9), при этом боковое разрешение составляет приблизительно 1 мкм и осевое разрешение (сечение толщины) 5 мкм. В микроскопе используется водная иммерсионная линза, так как коэффициент преломления воды близок к коэффициенту преломления эпидермиса , и это сводит к минимуму сферическую аберрацию, вызванную поверхностными эпидермальными слоями клеток, когда воспроизводится изображение глубже в дерме. Сканирование производится в плоскостях XY 4×4 мм с размером кадра 0,5×0,5 мм, частотой 9 кадров в секунду. С помощью этой системы можно получить изображение нормальной кожи на глубине от 200 до 400 мкм, достаточной для изображения эпидермиса и верхней части дермы (сосочковой и верхней ретикулярной). Отсканированное через иммерсионный объектив Lucid Stable View изображение с разрешением 1000×1000 точек обрабатывается программой

КЛИНИЧЕСКАЯ ДЕРМАТОЛОГИЯ И ВЕНЕРОЛОГИЯ 5, 2008

ОБЗОР ЛИТЕРАТУРЫ

Рис. 2. Конфокальный лазерный сканирующий микроскоп VivaScope 1500 «Lucid Inc».

Vivascope Ver.7,0 и передается на цветной монитор 19′′, имеющий максимальное разрешение 1280×1024 точек . При использовании микроскопа Vivascope 1500 не нужно применять контрастные вещества. Получение изображений возможно благодаря естественному контрасту и различиям в коэффициенте рефракции компонентов кожи, таких как меланин и кератин . Во время воспроизведения изображения используется специальное устройство для контакта с кожей, чтобы уменьшить образование артефактов. Оно содержит воду или гель на границе раздела фаз. Это устройство состоит из металлического кольца, которое фиксируется на коже пациента путем прилипания и соединяется с микроскопом, снабженным магнитом. Данное устройство имеет вогнутую форму, для того чтобы вмещать иммерсионную среду.

Метод КЛСМ позволяет получать изображения эпидермиса и поверхностной части дермы с разрешением, приближенным к традиционной световой микроскопии. С помощью данного метода можно получить изображения не только придатков кожи, но и отличить клетки различных слоев эпидермиса, волокна сосочкового слоя дермы, оценить состояние капилляров дермы. Можно исследовать морфологию разных клеток, определять размер, форму клеточных и субклеточных структур . Основное отличие КЛСМ от традиционного гистологического исследования заключается в том, что

получаемые изображения слоев кожи ориентированы горизонтально (параллельно) поверхности кожи (en face ), а также они представляют собой полутоновые изображения . В связи с этим могут возникать затруднения в трактовке полученных результатов и при сравнении изображений, полученных с помощью прижизненной КЛСМ и данными классической биопсии. С помощью КЛС микроскопа могут быть получены отдельные изображения сечений кожи, а также записаны небольшие кинофильмы для демонстрации динамических процессов, происходящих в коже, например кровотока .

Основными преимуществами прижизненной КЛСМ являются быстрота получения результата обследования по сравнению с классическим патогистологическим исследованием, которое включает в себя этапы иссечения маленького кусочка ткани (биопсию), фиксацию, нарезание на тонкие слои (сечения), окрашивание красителями и последующее изучение с помощью световой микроскопии. КЛСМ не изменяет ткани в ходе исследования, как это имеет место при гистологическом исследовании в результате получения сечений и их окрашивания, таким образом, минимизируется появление артефактов. Кроме того, процедура безболезненна, проходит без повреждения кожных покровов, не оставляет рубцовые изменения. Метод позволяет оценивать динамику заболеваний, а также дает возможность оперировать в режиме реального времени (при микрографической хирургии) .

Первые работы по применению КЛСМ в дерматологии были связаны с получением конфокальных изображений структуры здоровой кожи и последующим их анализом. В работах M. Rajadhyaksha, S. Gonzalez и соавт. , M. Huzaira и соавт. , K.J. Busam и соавт. приводятся подробные описания конфокальных изображений отдельных слоев эпидермиса, дермы, сосудистой сети, придатков кожи (отдельные сальные железы, сально-волосяные фолликулы, потовые протоки). Помимо качественных характеристик, даются морфометрическая оценка размеров клеток, глубины расположения и толщины слоев эпидермиса, оценка отдельных волокон и пучков коллагена сосочковой и верхней части ретикулярной дермы, приведены диаметр просветов капилляров, а также размеры отдельных клеток крови в просветах капилляров. K.J. Busam и соавт. , T.Yamashita и соавт. в своих статьях дают качественную оценку меланоцитам, приводят морфологические признаки меланоцитов, пигментированных кератиноцитов, меланофагов, позволя-

КЛИНИЧЕСКАЯ ДЕРМАТОЛОГИЯ И ВЕНЕРОЛОГИЯ 5, 2008

ющие различать указанные клетки на изображениях, полученных методом прижизненной КЛСМ. В ряде представленных работ дается оценка топографических особенностей строения здоровой кожи, проводится анализ возрастных изменений кожных покровов, влияния инсоляции на строение эпидермиса и дермы здоровых людей. Понимание того, как выглядят изображения здорового эпидермиса и дермы, имеет значение для последующего определения патологических изменений в коже.

Большое количество меланина, представленного в меланоцитарных очагах, делает пигментные новообразования кожи (невусы, меланома) идеальными для изображения и диагностики методом прижизненной КЛСМ . Целью любого визуализирующего метода, применяемого в дерматологии, является диагностика меланомы на ранних стадиях заболевания, так как от этого зависит эффективность проводимой терапии. Результаты исследований K.J. Busam и соавт. , G. Pellacani и соавт. , R. Langley и соавт. , A. Gerger и соавт. показали, что меланома может быть достаточно успешно диагностирована с помощью метода КЛСМ. Наличие плеоморфных ярких клеток внутри эпидермиса и дермы, которые могут быть звездообразной формы, обладать крупными ветвящимися отростками и эксцентрично расположенными крупными ядрами, а также нарушение архитектоники шиповатого слоя за счет нечетких границ клеток и ярких серых частиц (вероятно, меланина), распространенных внутри эпидермиса, позволяет диагностировать меланому . Внутриэпидермальная меланома также может быть диагностирована с помощью данного метода на основании критериев, которые применяются в традиционной гистологии. Конфокальные изображения внутриэпидермальных меланом позволили выявить увеличенное число интрадермальных увеличенных (атипичных) меланоцитов в солитарных единицах во всех слоях эпидермиса, включая верхние зернистый и шиповатый слои . Необходимо указать, что некоторые признаки меланом могут быть определены и в беспигментных меланомах . Однако следует отметить, что малые размеры выборок, на которых были проведены исследования, пока не позволяют судить о чувствительности и специфичности представленных критериев конфокальных изображений в постановке диагноза меланомы.

K.J. Busam и соавт., R. Langley и соавт. указывают на такие признаки меланоцитарных невусов на конфокальных изображениях, как наличие маленьких мономорфных круглых или овальных, сильно преломляющих свет клеток с центрально расположенными ядрами. Эти клетки могут быть видны внутри эпидермиса, в дермоэпидермальном соединении, типично окружая дермальный сосочек, и в поверхностной дерме в зависимости от вида невуса.

Они часто сгруппированы в круглые кластеры (гнезда), содержащие несколько клеток, расположенные вблизи кровеносных сосудов. Архитектура рогового, зернистого, шиповатого и базального слоев при этом остается неизмененной . Диспластические невусы характеризуются локальным уменьшением границ взаимодействия между кератиноцитами в дермоэпидермальном соединении, наличием характерных ярких гранул внутри эпидермиса (вероятно, меланиновых телец), большим разнообразием в размерах и форме невомеланоцитов, хотя они все еще имеют склонность быть более круглыми или овальными, чем ветвящимися. Приведенные исследования свидетельствуют о том, что признаки меланоцитарных невусов хорошо коррелируют с традиционной гистологической картиной. Однако остается до конца неизвестным, можно ли точно определить данным методом злокачественные клетки с малым количеством пигмента. Для выяснения этого вопроса необходимо проведение дальнейших исследований.

Метод прижизненной КЛСМ позволяет определять атипичные области, подозрительные в отношении неопластических очагов. В проанализированной литературе работы, посвященные изучению актинического кератоза, принадлежат D. Aghassi и соавт. , изучению плоскоклеточной карциномы - M. Horn и соавт. , исследованию базалиомы - M. Goldgrier и соавт. , A.L. Agero и соавт. , S. Nori и соавт. , K. Sauermann и соавт. . КЛСМ позволяет определять границы очага до начала терапии, что может быть полезным в оценке границ опухолей с радиальным характером роста, включая злокачественную лентиго-меланому, некоторые базалиомы или опухоли, трудные для клинического осмотра, например, склерозирующие инфильтративные базалиомы. Ключевые гистопатологические признаки актинического кератоза, выявляемые с помощью КЛСМ, включают архитектурный беспорядок, увеличение ядер эпидермиса с плеоморфизмом, паракератоз, что ведет к организованному беспорядку. В настоящее время глубина проникновения лазера является главным ограничением КЛСМ для диагностики актинического кератоза . Конфокальными признаками базалиомы - наиболее часто встречающейся опухоли кожи человека, являются островки мономорфных опухолевых клеток вытянутой формы с характерными вытянутыми ядрами, ориентированными вдоль той же самой оси. Эта картина однообразно ориентированных клеток проходит через всю толщу эпидермиса, теряя нормальную, напоминающую пчелиные соты модель, и архитектуру дермальных сосочков. Обильные кровеносные сосуды, демонстрирующие чрезмерную извилистость, также как и преимущественно мононуклеарный воспалительный инфильтрат, смешанны или тесно расположены с клетками базалиомы

КЛИНИЧЕСКАЯ ДЕРМАТОЛОГИЯ И ВЕНЕРОЛОГИЯ 5, 2008

ОБЗОР ЛИТЕРАТУРЫ

Результаты выполненного S. Nori и соавт. большого ретроспективного многоцентрового исследования показали значимую точность признаков, выявляемых при КЛСМ, для диагностики базалиомы in vivo . Таким образом, КЛСМ позволяет в реальном времени определить наличие резидуальной или клинически сомнительной базалиомы. По данным ряда исследований, КЛСМ помогает в скорой оценке границ опухолей при микрографической хирургии в ходе исследования эксцизионных образцов во время операции . Ограничивающими факторами в использовании прижизненной КЛСМ для диагностики опухолей кожи в настоящее время являются ограниченная глубина исследования, которая препятствует получению точных изображений ниже поверхностной дермы, и наличие преломляемости воспалительных клеток, среди прочих.

Выполненные в 90-х годах рядом исследователей (S. Gonzalez и др.) работы по изучению различных воспалительных состояний кожи с помощью отражательной конфокальной микроскопии позволили выявить большую значимость данного метода как полезного диагностического инструмента . Наибольшее преимущество метода заключается в том, что он позволяет в реальном времени оценивать динамические процессы при воспалительных заболеваниях кожи и, что очень важно, оценивать эффективность проводимой терапии дерматозов . С помощью прижизненной КЛСМ оценены воспалительные изменения при псориазе , аллергическом и простом контактном дерматитах , фолликулите , дерматомикозах , бородавках , простом герпесе , системном склерозе . На конфокальных изображениях признаки вульгарного псориаза в стационарной стадии соответствуют обычной гистологической картине и включают паракератоз, микроабсцессы Мунро, акантоз, расширение капилляров, папилломатоз . Отчетливо видны границы воспалительного очага . С помощью КЛСМ в режиме реального времени визуализируются такие типичные признаки контактного дерматита, как спонгиоз, образование микровезикул, воспалительный инфильтрат и местами эпидермальный некроз . С использованием данного метода были продемонстрированы патогистологические особенности простого и аллергического дерматитов, а также показано, что конфокальная микроскопия может применяться для оценки расовых (у представителей негроидной и европеоидной расы) особенностей острого контактного дерматита . Конфокальная лазерная сканирующая микроскопия позволяет быстро, в реальном времени обнаруживать ветви гиф и воспалительный инфильтрат in vivo или iv vitro с ногтевых пластинок и кусочков кожи . Фолликулит, изображенный с помощью конфокальной микроскопии, может быть окончательно диагностиро-

ван путем прямой демонстрации внутриэпидермальных пустул, воспалительного инфильтрата, спонгиоза и дилатации капилляров . Бородавки на конфокальных снимках характеризуются гиперкератотическим роговым слоем и наличием множественных сильно преломляющих округлых структур размером 20-40 мкм внутри очага, что позволяет быстро и окончательно поставить диагноз . Герпетической инфекции кожи соответствуют плеоморфные баллонирующие кератиноциты и многоядерные гигантские клетки в свободной совокупности с кератиноцитами и воспалительными клетками .

Таким образом, метод прижизненной КЛСМ позволяет in vivo оценивать патоморфологические изменения в коже при различных дерматозах, включая неопластические очаги, меланоцитарные невусы, меланому, что, несомненно, подтверждает полезность данного инструмента в диагностике различных дерматологических заболеваний. Учитывая неинвазивный характер метода, возможность повторного многократного исследования одних и тех же очагов, представляется, что КЛСМ в большей степени полезна при оценке динамических изменений, происходящих в коже в ходе эволюции заболеваний и на фоне проводимой терапии дерматозов.

Несмотря на явные полезные стороны прижизненной КЛСМ, существуют также некоторые ограничения и сложности в применении данного метода. Настоящая техника сложна и затратна, и поэтому не очень широко доступна исследователям и клиницистам. Тем не менее несколько групп ученых в институтах и в промышленности разрабатывают более простые, менее затратные сканирующие технологии. Разрабатываются также более портативные аппараты по сравнению с ныне существующими, так как громоздкие установки неудобны в использовании при обследовании труднодоступных областей тела. Ограничивающим фактором в использовании прижизненной КЛСМ является ограниченная глубина исследования, которая препятствует получению точных изображений ниже поверхностной дермы. Продолжается работа по созданию вертикально ориентированных сечений, которые были бы сходны с теми, что мы видим при гистологическом исследовании, так как это значительно бы увеличило возможности прижизненной КЛСМ. Большую научную проблему составляет трактовка изображений

Способность читать, интерпретировать и анализировать конфокальные изображения с тем, чтобы выделить полезную клиническую и гистологическую информацию. Несколько групп ученых по всему миру выполняют детальные исследования, чтобы характеризовать конфокальные изображения и провести их корреляцию с гистологией. Одной из важных проблем остается определение чувствительности и специфичности данного метода исследования в диагностике разных дерматозов .

КЛИНИЧЕСКАЯ ДЕРМАТОЛОГИЯ И ВЕНЕРОЛОГИЯ 5, 2008

ЛИТЕРАТУРА

1. Abramovits W., Stevenson L.C. Changing paradigms in dermatology: new ways to examine the skin using noninvasive imaging methods. Clinics in Dermatology 2003; 21: 353-358.

2. Minsky M. Microscopy apparatus. US Pat 1961; 467.

3. Minsky M. Memoir on inventing the confocal scanning microscopy. Scanning 1988; 10: 128-138.

4. Egger M.D., Petran M. New reflected-light microscope for viewing unstained brain and ganglion cells. Science 1967; 157: 305-307.

5. Davidovits P., Egger M.D. Photomicrography of corneal endothelial cells in vivo. Nature 1973; 244: 366-367.

6. Amos W.B., White J.G. How the confocal laser scanning microscope entered biological research. Biology of the Cell 2003; 95: 335-342.

7. Brakenhoff G.J., Blom P., Barends P. Confocal scanning light microscopy with high aperture immersion lenses. J Microscopy 1979; 117: 219- 232.

8. Sheppard C.J.R., Wilson T. Effect of spherical aberration on the imaging properties of scanning optical microscopes. Applied Optics 1979; 18: 1058.

9. Hamilton D.K., Wilson T. Scanning optical microscopy by objective lens. Scanning, Journal of Physics E: Scientific Instruments 1986; 19: 52-54.

10. Pawley J.B. Handbook of biological confocal microscopy. New York: Plenum Press 1995.

11. Gonzalez S., Swindells K., Rajadhyaksha M., Torres A. Changing paradigms in dermatology: confocal microscopy in clinical and surgical dermatology. Clin Derm 2003; 21: 359-369.

12. Rajadhyaksha M., Grossman M., Esterowitz D. et al. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol 1995; 104: 946-952.

13. Rajadhyaksha M., Gonzalez S., Zavislan J.M. Son R.R. et al. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison to histology. J Invest Dermatol 1999; 113: 101-112.

14. Confocal laser microscope images tissue in vivo. Laser Focus World 1997; 33: 119-127.

15. Rajadhyaksha M., Zavislan J.M. Confocal reflectance microscopy of unstained tissue in vivo. Retinoids 1998; 14: 26-30.

16. Gonzalez S., Rajadhyaksha M., Anderson R.R. Non-invasive (realtime) imaging of histologic margin of a proliferative skin lesion in vivo. J Invest Dermatol 1998; 111: 538-539.

17. Gonzalez S., Gonzalez E., White W.M. et al. Allergic contact dermatitis: correlation of in vivo confocal imaging to routine histology. J Am Acad Dermatol 1999; 40: 708-713.

18. Swindle L.D., Thomas S.G., Freeman M., Delaneyz P.M. View of normal human skin in vivo as observed using fluorescent fiber-optic confocal

microscopic imaging. J Invest Dermatol 2003; 121: 706- 712.

19. Delaney P.M., Harris M.R., King R.G. Novel microscopy using fiber optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo. Clin Exp Pharmacol Physiol 1993; 197: 20.

20. Busam K.J., Charles C., Lohmann C.M. et al. Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy. Melanoma Research 2002; 12: 349-355.

21. Aghassi D., Anderson R.R., González S. Confocal laser microscopic imaging of actinic keratoses in vivo: a preliminary report. J Am Acad Dermatol 2000; 43: 42-48.

22. Руководство по эксплуатации VivaScope 1500 Lucid Inc.

23. Corcuff P., Bertrand C., Leveque J.L. Morphometry of human epidermis in vivo by real-time confocal, microscopy. Arch Dermatol Res 1993; 285: 475-481.

24. Meyer L.E., Otberg N., Richter H., Sterry W. et al. New prospects in dermatology: fiber-based confocal scanning laser microscopy. Laser Physics 2006; 16: 5: 758-764.

25. Serup J., Jemec G.B.E., Grove G.L. Handbook of non-invasive methods and the skin. 2nd ed. CRC Press 2006; 32: 267-276.

26. Huzaira M., Rius F., Rajadhyaksha M., Anderson R.R. et al. Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J Invest Dermatol 2001; 116: 846-852.

27. Busam K.J., Charles C., Lee G., Halpern A.C. Morphologic features of melanocytes, pigmented keratinocytes and melanophages by in vivo

confocal scanning laser microscopy. Mod Pathol 2001; 14: 9: 862- 868.

28. Yamashita T., Kuwahara T., Gonzalez S., Takahashi M. Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy. J Invest Dermatol 2005; 124: 235-240.

29. Sauermann K., Clemann S., Jaspers S., Gambichler T. et al. Age related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo. Skin Research and Technology 2002; 8: 52-56.

30. Sauermann K., Jaspers S., Koop U., Wenck H. Topically applied vitamin C increases the density of dermal papillae in aged human skin. BMC Dermatology 2004; 4:13 doi:10.1186/1471-5945-4-13.

31. Pellacani G., Cesinaro A.M., Seidenari S. Reflectance-mode confocal microscopy of pigmented skin lesions-improvement in melanoma diagnostic specificity. J Am Acad Dermatol 2005; 53: 979-985.

32. Langley R.G.B., Rajadhyaksha M., Dwyer P.J., Sober A.J. et al. Confocal scanning laser microscopy of benign and malignant melanocytic skin lesions in vivo. J Am Acad Dermatol 2001; 45: 365-376.

33. Gerger A., Koller S., Kern T., Massone C. et al. Diagnostic applicability of in vivo confocal laser scanning microscopy in melanocytic skin tumors. J Invest Dermatol 2005; 124: 493-498.

34. Busam K.J., Hester K., Charles C. et al. Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy. Arch Dermatol 2001; 137: 923-929.

35. Horn M., Gerger A., Koller S. et al. The use of confocal laser-scanning microscopy in microsurgery for invasive squamous cell carcinoma. British Journal of Dermatology 2007; 156: 81-84.

36. Goldgrier M., Fox C.A., Zavislan J.M. et al. Noninvasive imaging, treatment and microscopic confirmation of clearance of basal cell carcinoma. Dermatol Surg 2003; 29: 205-210.

37. Agero A.L.C., Busam K.J., Benvenuto-Andrade C. Reflectance confocal microscopy of pigmented basal cell carcinoma. J Am Acad Dermatol 2006; 54: 638-643.

38. Nori S., Rius-Dıaz F., Cuevas J. et al. Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell сarcinoma: a multicenter study. J Am Acad Dermatol 2004; 51: 923-930.

39. Sauermann K., Gambichler T., Wilmert M. et al. Investigation of basal cell сarcinoma by confocal laser scanning microscopy in vivo. Skin Research and Technology 2002; 8: 141-147.

40. Gonzalez S., Sackstein R., Anderson R.R., Rajadhyaksha M. Real-time evidence of in vivo leukocyte trafficking in human skin by reflectance confocal microscopy. J Invest Dermatol 2001; 117: 2: 384-386.

41. González S., Rajadhyaksha M., Rubinstein G., Anderson R.R.

Characterization of psoriasis in vivo by reflectance confocal microscopy. J Med 1999; 30: 337-356.

42. Astner S., Gonzalez E., Cheung A.C. et al. Non-invasive evaluation of the kinetics of allergic and irritant contact dermatitis. J Invest Dermatol 2005; 124: 351-359.

43. Hicks S.P., Swindells K.J., Middelkamp-Hup M.A. et al. Confocal histopathology of irritant contact dermatitis in vivo and the impact of skin color (black vs white). J Am Acad Dermatol 2003; 48: 727-734.

44. Gonzalez S., Rajadhyaksha M., Gonzalez-Serva A. et al. Confocal reflectance imaging of folliculitis in vivo: correlation with routine histology. J Cutan Pathol 1999; 26: 201-205.

45. Markus R., Huzaira M., Anderson R.R., Gonzalez S. A better potassium hydroxide preparation? In vivo diagnosis of tinea with confocal microscopy. Arch Dermatol 2001; 137: 1076-1078.

46. Hongcharu W., Dwyer P., Gonzalez S., Anderson R.R. Confirmation of onychomycosis by in vivo confocal microscopy. J Am Acad Dermatol 2000; 42: 214-216.

47. Goldgeier M., Fox C.A., Muhlbauer J.E. Immediate noninvasive diagnosis of herpesvirus by confocal scanning laser microscopy. J Am Acad Dermatol 2002; 46: 783-785.

48. Sauermann K., Gambichler T., Jaspers S. et al. Histometric data obtained by in vivo confocal laser scanning microscopy in patients with systemic sclerosis. BMC Dermatology 2002; 2: 8.

КЛИНИЧЕСКАЯ ДЕРМАТОЛОГИЯ И ВЕНЕРОЛОГИЯ 5, 2008

Конфокальная микроскопия — один из методов оптической микроскопии, обладающий значительным контрастом по сравнению с микроскопами классической схемы за счет использования диафрагмы, отсекающей поток фонового рассеяного света. В конфокальном микроскопе в каждый момент времени регистрируется изображение одной точки объекта, а полноценное изображение строится путем сканирования (движения образца или перестройки оптической системы). Для того, чтобы регистрировать свет только от одной точки после объективной линзы располагается диафрагма малого размера таким образом, что свет, испускаемый анализируемой точкой, проходит через диафрагму и будет зарегистрирован, а свет от остальных точек в основном задерживается диафрагмой.

Повышение контраста изображения также достигается за счет того, что осветитель создает не равномерную освещенность поля зрения, а фокусирует свет в анализируемую точку. Это может достигаться расположением второй фокусирующей системы за образцом, но при этом требуется, чтобы образец был прозрачным. Кроме того, объективные линзы обычно сравнительно дорогие, поэтому использование второй фокусирующей системы для подсветки мало предпочтительно. Альтернативой является использование светоделительной пластинки, так чтобы и падающий и отраженный свет фокусировались одним объективом. Такая схема к тому же облегчает юстировку.

Уменьшение отверстия в диафрагме приводит к уменьшению толщины оптического слоя, что повышает контрастность изображения, однако при этом падает его яркость, что требует использования высокочувствительных регистрирующих систем и в процессе исследования заставляет идти на компромисс между яркостью и контрастом получаемого изображения.

Наиболее часто встречающейся задачей для конфокальной микроскопии, благодаря ее высокому разрешению и контрасту, является изучение структуры клеток и их органелл, например, цитоскелета, ЭПР, лизосом, митохондрий, ядра, хромосом и даже генов. Исследуется также колокализация в клетке двух и более веществ. Еще одна задача - исследование динамических процессов, происходящих в живых клетках. Например, клеточного транспорта биологически-активных соединений, изменений концентрации и распределения ионов кальция. Записав в памяти компьютера серию оптических срезов, можно провести объемную реконструкцию объекта и получить его трехмерное изображение, не используя трудоемкую методику изготовления и фотографирования серийных гистологических срезов.

Новыми перспективными направлениями являются методики FRAP - Fluorescence Recovery After Photobleaching (Восстановление флуоресценции после фотовыжигания) и FRET - Fluorescence Resonance Energy Transfer (Передача энергии посредством флуоресцентного резонанса).

Глоссарий:

FRAP применяется для исследования подвижности биоорганических молекул посредством инициации фотохимического разложения флуорохрома в зоне облучения и последующего его рассоединения с молекулами. После выжигания молекулы с флуорохромом из необлученной зоны движутся вследствие диффузии в облученную зону образца. По времени нарастания в ней флуоресценции можно судить о подвижности молекул.

FRET применяется для определения расстояния между молекулами разных типов, их окружения и взаимодействия. Молекулы метятся двумя флуорохромами со спектром испускания донора, перекрывающимся со спектром поглощения акцептора. Энергия от донора к акцептору передается на малых расстояниях (несколько нм) в результате резонанса между энергетическими уровнями, а его вероятность зависит от расстояния между молекулами. Затем акцептор излучает энергию в видимой области спектра, которая регистрируется конфокальным микроскопом.

Двухфотонная (мультифотонная) микроскопия - Two Photon (Multiphoton) Microscopy - Методика, производная от лазерной сканирующей конфокальной микроскопии, при которой возбуждение флуорохромов осуществляется лазерным излучением инфракрасного или длинноволнового видимого диапазона, плотность которого удваивается или даже утраивается в месте фокусировки на образце. Флуорофоры образца переводятся в возбужденное состояние двумя или тремя длинноволновыми фотонами, что эквивалентно возбуждению одним коротковолновым фотоном. Например, возбуждение двумя или тремя фотонами с длиной волны 900 нм эквивалентно возбуждению одним фотоном с длиной волны 450 или 300 нм. Мультифотонная микроскопия обеспечивает более глубокое проникновение в толщу тканей и не требует наличия конфокальной микродиафрагмы, так как ее флуоресценция возникает строго в фокальной плоскости.

Акусто-оптический перестраиваемый фильтр (AOTF) - Acousto- Optic Tunable Filter (AOTF) - Фильтрующее устройство, использующее звуковые колебания для модулирования длины волны или интенсивности света, испускаемого лазером или некогерентным источником света (в первую очередь дуговыми лампами). Фильтр состоит из специализированного кристалла (оксид теллура или кварц), зажатого с двух сторон акустическими излучателем и поглотителем для наведения в кристалле стоячих акустических волн с переменными зонами высокого и низкого преломления. Если поляризованный или неполяризованный свет проходит через фильтр, кристалл воздействует на него как дифракционная решетка, отклоняющая проходящий луч. Для изменения периода дифракционной решетки выбираются характерные длины стоячих волн, получаемые в результате изменения звуковых колебаний, подводимых к кристаллу.

Полосовой фильтр - Bandpass Filter - фильтр, пропускающий определенный диапазон (полосу) длин волн ослабляя при этом волны большей и меньшей длины, чем у пропускаемых. Длина волны в середине пропускаемой полосы обычно называется средней (английская аббревиатура CWL). Эффективная полоса пропускания измеряется шириной зоны, пропускающей половину от максимума падающего света, которая еще называется полосой половинного пропускания (аббревиатуры FWHM и HBW). В флуоресцентной микроскопии полосовые фильтры чаще используются в тракте возбуждения и реже в качестве пороговых (барьерных) фильтров.

Светоделитель - Beamsplitter - Оптическое устройство, используемое для разделения падающего светового луча на две или более составляющих, каждые из которых проецируются в различных направлениях. Для выполнения каких-либо определенных условий светоделители бывают различных конфигураций. В окулярных блоках оптических микроскопов используются призматические светоделители для одновременного проецирования изображения в окуляры и фотокамеру (цифровую камеру). Для получения линейно поляризованного света применяются поляризующие светоделители из природного кварца - материала с двойным преломлением. В флуоресцентной микроскопии для отражение волн возбуждения обратно к источнику и пропускания более длинноволнового вторичного флуоресцентного излучения к окулярам и детектору в качестве светоделителей используются дихроматичные (дихроичные) зеркала.

Холодное зеркало - Cold Mirror - Специализированный дихроматичный интерференционный фильтр, который в очень широком диапазоне температур отражает весь видимый спектр, но очень эффективно пропускает волны в инфракрасной области. Аналогично горячим зеркалам холодные могут быть разработаны для отражения лучей, падающих под углами от нуля до 45 градусов и представлять собой многослойные диэлектрические покрытия наподобие интерференционных фильтров. Холодные зеркала могут использоваться в качестве дихроматических светоделителей в лазерных системах для отражения видимого света и пропускания инфракрасного.

Дихроматичный светоделитель (дихроичное зеркало) - Dichromatic Beamsplitter (Dichroic Mirror) - Комбинация интерференционных фильтров/зеркал обычно применяемая в наборах фильтров для флуоресцентной микроскопии для получения четко определяемого перехода между пропускаемыми и отраженными длинами волн. Дихроматичное зеркало, наклоненное под углом 45 градусов к падающему свету и испускаемому излучению, отражает коротковолновое излучение возбуждения под углом 90 градусов на образец и пропускает более длинноволновое излучение от образца на окуляры и детектор. Дихроматичные зеркала для флуоресцентной микроскопии, изготовленные с использованием тонких интерференционных пленок способны отразить до 90 % возбуждающего излучения, одновременно пропуская до 90 % полосы флуоресцентного излучения. Дихроматичные зеркала обычно являются центральным (основным) элементом в трех видах фильтров (возбуждения, барьерных и дихроматичных зеркал), находящихся в составе блока флуоресцентных оптических фильтров.

Скат фильтра - Filter Slope - Скат оптического фильтра - это характеристика профиля фильтра в области перехода от запирания к пропусканию. В целом, скат фильтра характеризуется длиной волны, на которой фильтр демонстрирует определенный коэффициент пропускания и крутизну характеристики в этом месте. Два различных фильтра могут иметь одни и те же частоты среза, но совершенно разные уровни запирания и скаты. Фильтры с очень крутыми скатами имеют узкую полосу пропускания, в то время как пологие скаты означают широкую полосу.

Полная ширина на половине максимума - Full Width at Half Maximum (FWHM) - Диапазон длин волн пропускаемых стеклянным или интерференционным фильтром описывается параметром, известным как полная ширина на половине максимума (FWHM). Границы среза определяются как наименьшая и наибольшая длины волн, пропускаемые фильтром на уровне 50% от максимума, а средняя длина волны (CWL или СДВ) представляет собой среднее арифметическое от всех длин волн внутри диапазона. Например, величина FWHM, равная 40 означает, что ширина пропускаемого диапазона волн составляет 40 нм, причем значение СДВ (CWL) может лежать где угодно от ультрафиолетовой до инфракрасной частей спектра. Во многих текстах FWHM может обозначаться как половинная полоса пропускания (half bandwidth, HBW).

Видеокамеры ISIT - Intensifier Silicon- Intensifier Target (ISIT) Camera - Видеокамеры, предназначенные для работы при низком уровне освещения, как например в флуоресцентной микроскопии образцов с очень низким квантовым выходом. Эти камеры как правило включают в себя SIT - трубку (с диодной матрицей) дополненную усилителем изображения в комбинации с волоконной оптикой на первой ступени усиления света.

Ближнепольная сканирующая оптическая микроскопия (БСОМ ) - Near- Field Scanning Optical Microscopy (NSOM) - Ближнепольное изображение получается при размещении оптического зонда (световода) субмикронного размера на чрезвычайно близком расстоянии от изучаемого объекта, а свет пропускается через небольшую диафрагму на конце зонда. Под ближним полем понимается зона над поверхностью изучаемого объекта размером меньше длины волны падающего света. В пределах ближнего поля затухающий свет не ограничен дифракцией, и возможно получение информации относительно объектов нанометрового порядка. Это явление позволяет получать изображения за пределами дифракционного барьера и проводить спектроскопию образцов, недостижимую средствами обычной оптической микроскопии.

Конфокальная лазерная сканирующая микроскопия (CLSM) является методом оптического трехмерного (3D) поверхностного профилирования с высокой разрешающей способностью.

Высокая числовая апертура линзовых объективов (до 0.95) и короткая длина волны лазерного излучения обеспечивают получение изображений с высоким разрешением вдоль оптического и поперечного направлений.

Также конфокальные микроскопы обладают значительным контрастом по сравнению с классическими оптическими микроскопами за счет использования специальной диафрагмы (пинхол), отсекающей поток фонового рассеянного света - это помогает улучшить качество изображения.

В конфокальном микроскопе в каждый момент времени регистрируется изображение одной точки объекта, а полноценное изображение строится путем сканирования (движение образца или перестройка оптической системы). Для того чтобы регистрировать свет только от одной точки после объектива располагается пинхол таким образом, что свет, испускаемый анализируемой точкой, проходит через него и будет зарегистрирован, а свет от остальных точек отрезается данным пинхолом.

Повышение контраста изображения также достигается за счет того, что осветитель создает не равномерную освещенность поля зрения, а фокусирует свет в анализируемую точку. Это может достигаться за счет использования светоделительной пластинки, так чтобы и падающий и отраженный свет фокусировались одним объективом. Такая схема к тому же облегчает юстировку.

Получение изображения в режиме реального времени достигается за счет модуля быстрого сканирования и алгоритма обработки сигналов. Для получения 3D профиля поверхности образца требуется менее 1 секунды. Конфокальная лазерная сканирующая микроскопия является техникой оптического неразрушающего контроля для профилирования поверхностей микроструктур с высоким разрешением. Это является идеальным решением для измерения и проверки полупроводниковых пластин, FPD продуктов, MEMS устройств, поверхностей стекла и других материалов.

Способность измерения высоты достигается благодаря конфокальному расположению источника, образца и детектора. Когда образец находится в фокальной плоскости объектива, свет, отраженный на поверхности образца, фокусируется на конфокальное отверстие, а фотодетектор собирает сигнал от образца. Однако образец помещают в положение не в фокусе, и световой сигнал отклоняется конфокальной диафрагмой. Таким образом, только сигнал в фокусе попадает на фотодетектор. Этим объясняется оптическая селективная способность CLSM технологии.

Для получения 3D профиля поверхности образца, оптические изображения собираются вдоль оси Z. Благодаря конфокальному отверстию интенсивность света максимальна, когда образец располагается в фокальной плоскости.

Максимальная интенсивность излучения регистрируется в фокальной плоскости. Интенсивность уменьшается, когда образец отводится от фокальной плоскости.

Для точного нахождения максимальной интенсивности используется многоточечное позиционирование вблизи максимального положения. Это обеспечивает максимальную воспроизводимость измерения высоты. Высота рассчитывается путем аппроксимации кривой на каждом пикселе. С помощью этой высотной карты строится профиль поверхности образца.

Как уже говорилось выше, важными параметрами данной технологии являются высокое разрешение и высокий контраст. В наших конфокальных микроскопах (серии NS-3500) эти параметры улучшены за счет использования пьезоэлектрических приводов для перемещения сканирующей головки в диапазонах 200 мкм и 400 мкм с шагом в 0.1 нм в режиме точного сканирования, что позволяет получать изображения поверхности образцов с еще более высоким разрешением и контрастом, чем у других конфокальных микроскопов. Данная особенность позволяет анализировать и получать трехмерные изображения мельчайших структур, исследовать до нескольких слоев прозрачных покрытий на различных микросхемах, проводить анализ микроглубоких структур (например, анализ микро- и нанотрещин нефтяных и газовых труб, поршней двигателей автомобилей, закрылок самолетов и т.п.).

Другим важным аспектом для конфокальной микроскопии является необходимость наличия инструмента для анализа полученной информации. Наше простое и интуитивное программное обеспечение позволяет с легкостью анализировать полученные изображения с цифровым разрешением до 0.001 мкм. Также оно предоставляет Вам возможность анализировать большие образцы за счет сканирования малых областей и их последующего сшивания, проводить анализ шероховатости и отдельных пирамидальных и конусообразных микроструктур (что особенно важно при контроле солнечных элементов) и т.п. Дополнительная система автофокусировки и наличие ПЗС-камеры еще больше упрощают процедуру измерения и позволяют Вам полностью сосредоточиться на исследовании, не отвлекаясь на второстепенные действия.

CLSM имеет множество применений в промышленных областях, поскольку это быстрый, неразрушающий и надежный способ 3D профилирования поверхностей. Лазерный конфокальный микроскоп может измерять 3D форму, высоту ступеньки, объем микроструктур, ЖК панели, полупроводниковые пластины, MEMS устройства, поверхности материалов, прозрачные стеклянные поверхности. Кроме того, конфокальная микроскопия широко используется для биологических исследований.

Марголин 389с.

Оптическая микроскопия использовала все достижения как техники и технологии, так и информационных и компьютерных технологий. Это привело к значительному усовершенствованию имеющейся аппаратуры и методик ее использования, что, в свою очередь, привело к появлению новых методов, в частности, кон­фокальной микроскопии. Конфокальный микроскоп отличается от классического оптического микроскопа тем, что в каждый момент времени регистрируется изображение одной точки объек­та, а полноценное изображение строится путем сканирования (движения образца или перестройки оптической системы). Та­ким образом, в своеобразной форме реализуется принцип рас­тровой электронной микроскопии, что позволяет сколь угодно долго регистрировать и обрабатывать сигнал с каждой отдельно взятой точки.

В классическом микроскопе в фотоприемное устройство попа­дает свет из различных точек образца. В конфокальном микроско­пе для того, чтобы регистрировать свет только от одной точки, после объективной линзы располагается диафрагма малого разме­ра таким образом, что свет, испускаемый анализируемой точкой, проходит через диафрагму и будет зарегистрирован, а свет от ос­тальных точек в основном задерживается диафрагмой, как это показано на рис. 7.28.

Рис. 7.28. Схема прохождения лучей в конфокальном оптическом микроскопе

Еще одна особенность заключается в том, что осветитель со­здает не равномерную освещенность поля зрения, а фокусирует свет в анализируемую точку. Это может достигаться расположени­ем второй фокусирующей системы за образцом, но при этом тре­буется, чтобы образец был прозрачным. Кроме того, объективные линзы обычно имеют высокую стоимость, поэтому использова­ние второй фокусирующей системы для подсветки мало предпоч­тительно. Альтернативой является использование светоделитель­ной пластинки, так чтобы и падающий и отраженный свет фоку­сировались одним объективом. Такая схема к тому же облегчает юстировку.

Рассмотрим теперь, каким образом и насколько количествен­но изменяется контрастность при применении конфокальной микроскопии. Так как в конфокальном микроскопе свет дважды проходит через объектив, функция размытия точки (далее обо­значаемая PSF) будет представлять собой произведение независи­мых вероятностей того, что фотон попадет в точку с ее координа­тами либо фотон будет зарегистрирован из этой точки.

Если использовать критерий Рэлея для разрешения, то полу­чится, что разрешение в конфокальном микроскопе увеличивает­ся, но не существенно. Для конфокального микроскопа имеем выражение для разрешения r:

В то время как для обычного микроскопа:

Однако основным достоинством конфокального микроскопа является не увеличение разрешения в смысле критерия Рэлея, а существенное увеличение контрастности. В частности, для обыч­ной PSF в фокальной плоскости отношение амплитуды в первом боковом максимуме к амплитуде в центре составляет 2%, а для конфокального микроскопа это отношение будет составлять 0,04 %. Из этого следует, что тусклый объект с интенсивностью, напри­мер, в 200 раз меньшей, чем у яркого объекта, в обычном микро­скопе обнаружить невозможно, хотя расстояние между объектами может быть существенно больше того расстояния, которое пред­писано критерием Рэлея. В то же время в конфокальном микро­скопе такой объект должен хорошо регистрироваться.

Важным параметром является размер диафрагм в фокальной плоскости облучающей и собирающей линз. Изображение диаф­рагмы в плоскости объекта определяет, из каких областей свет регистрируется фотодетектором. Очевидно, что уменьшение раз­мера диафрагмы приводит к уменьшению количества проходяще­го света, увеличивает уровень шума и в конечном итоге может свести на «нет» все достигнутые преимущества по контрастности. Таким образом, встает вопрос об оптимальном выборе размера диафрагмы и разумном компромиссе.

Диафрагма с размером отверстия меньше пятна Эйри просто приводит к потере интенсивности и никак не влияет на разреше­ние. Диафрагма с размером отверстия в одно пятно Эйри позво­ляет максимально использовать разрешающую способность объек­тивной линзы. Однако диафрагма с размером отверстия примерно в 3 - 5 раз больше пятна Эйри представляется наиболее подходя­щим компромиссом. Следует понимать, что обсуждаемый здесь размер имеет смысл размера изображения в плоскости объекта, а поэтому реальный размер отверстия в диафрагме зависит от уве­личения линзы. В частности, при использовании 100-кратной линзы диафрагма с отверстием 1 мм будет спроецирована в плоскость объекта в круг радиусом 10 мкм.

Развитием идеи конфокальной микроскопии явилась разработка конфокального лазерного сканирующего микроскопа (KJICM), что было вызвано потребностью в более чувствительных и метрологи­чески строгих методах анализа формы и пространственной струк­туры наблюдаемых объектов. Принципиальная схема КЛСМ с ос­новными функциональными связями показана на рис. 7.29.

Основной особенностью КЛСМ является возможность послой­ного изображения исследуемого объекта с высоким разрешением и низким уровнем шумов. Достигается это путем пошагового ска­нирования объекта сфокусированным пучком света от когерент­ного источника или передвижением столика с использованием специальных флуоресцентных зондов и специальных методов ог­раничения световых потоков.

Рис. 7.29. Структурная схема KJICM:

1 - сканирующий столик; 2 - исследуемый образец; 3, 6 - объективы; 4 - сканирующее устройство; 5 - светоделительная пластина; 7, 9 - игольчатые ди­афрагмы; 8 - приемник излучения; 10 - лазер; 11 - блок управления; 12 - компьютер; 13 - привод для сканирования по оси z.

Использование в КЛСМ точечной диафрагмы, размеры кото­рой согласованы с увеличением микроскопа и длиной волны, дает возможность повысить разрешение более чем на 10%. Очевидно, что разрешение КЛСМ и соответственно возможности анализа тон­ких структур могут превышать аналогичные возможности обычного микроскопа не более чем на 40 % в условиях сканирования пре­парата тонким лучом. Разрешающая способность KЛCM зависит от способа микроскопирования и освещения. Разрешение KЛCM оп­ределяется как оптической системой, так и электронным трактом обработки информации. Поэтому в конструкции KЛCM, его схе­мах должны быть согласованы такие параметры, как разрешение оптической системы, шаг сканирования, характеристики детекто­ра, а также должны быть выбраны оптимальные алгоритмы обра­ботки и соответствующее программное обеспечение.

В общем случае глубина резкости KЛCM зависит от апертуры, длины волны, когерентности источников света и размеров иголь­чатой диафрагмы. Игольчатая диафрагма является основным эле­ментом конструкции, отличающим KЛCM от других типов мик­роскопов. Игольчатые диафрагмы предназначены для создания условий максимальной или полной фильтрации света, попадаю­щего в плоскость формирования изображения от точек, не совпа­дающих с фокальной плоскостью или находящихся рядом с анализируемым элементом объекта в фокальной плоскости.

Выбор оптимального диаметра игольчатой диафрагмы важен для получения требуемых характеристик прибора. Соотношения для оценки латерального разрешения и глубины резкости KJICM получаются в предположении, что игольчатая диафрагма имеет малое отверстие, являясь светящейся точкой. Реально размер иголь­чатой диафрагмы конечен и от него зависят поперечное разреше­ние прибора, яркость освещенных элементов препарата, смещен­ных относительно фокальной плоскости по оси z, и глубина рез­кости. При малых диаметрах игольчатой диафрагмы све­товой поток становится малым, что уменьшает отношение сиг­нал/шум и снижает контрастность. При больших диаметрах эф­фективность игольчатой диафрагмы снижается за счет уменьше­ния апертуры.